Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Proc Biol Sci ; 291(2018): 20232245, 2024 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-38471555

RESUMEN

Anthropogenic activities have reshaped biodiversity on islands worldwide. However, it remains unclear how island attributes and land-use change interactively shape multiple facets of island biodiversity through community assembly processes. To answer this, we conducted bird surveys in various land-use types (mainly forest and farmland) using transects on 34 oceanic land-bridge islands in the largest archipelago of China. We found that bird species richness increased with island area and decreased with isolation, regardless of the intensity of land-use change. However, forest-dominated habitats exhibited lower richness than farmland-dominated habitats. Island bird assemblages generally comprised species that share more similar traits or evolutionary histories (i.e. functional and/or phylogenetic clustering) than expected if assemblages were randomly assembled. Contrary to our expectations, we observed that bird assemblages in forest-dominated habitats were more clustered on large and close islands, whereas assemblages in farmland-dominated habitats were more clustered on small islands. These contrasting results indicate that land-use change interacts with island biogeography to alter the community assembly of birds on inhabited islands. Our findings emphasize the importance of incorporating human-modified habitats when examining the community assembly of island biota, and further suggest that agricultural landscapes on large islands may play essential roles in protecting countryside island biodiversity.


Asunto(s)
Biodiversidad , Aves , Animales , Humanos , Filogenia , Islas , Ecosistema
2.
Conserv Biol ; : e14241, 2024 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-38450847

RESUMEN

Behavioral changes are often animals' first responses to environmental change and may act as a bellwether for population viability. Nonetheless, most studies of habitat conversion focus on changes in species occurrences or abundances. We analyzed >14,000 behavioral observations across 55 bird species in communities in northwestern Costa Rica to determine how land use affects reproductive, foraging, and other passive kinds of behaviors not associated with either foraging or reproduction. Specifically, we quantified differences in behaviors between farms, privately owned forests, and protected areas and implemented a novel modeling framework to account for variation in detection among behaviors. This framework entailed estimating abundances of birds performing different behaviors while allowing detection probabilities of individuals to vary by behavior. Birds were 1.2 times more likely to exhibit reproductive behaviors in forest than in agriculture and 1.5 times more likely to exhibit reproductive behaviors in protected areas than in private forests. Species were not always most abundant in the habitats where they were most likely to exhibit foraging or reproductive behaviors. Finally, species of higher conservation concern were less abundant in agriculture than in forest. Together, our results highlight the importance of behavioral analyses for elucidating the conservation value of different land uses.


Efectos de la agricultura y las reservas naturales sobre el comportamiento de las aves en el noroeste de Costa Rica Resumen Los cambios conductuales suelen ser la primera respuesta de los animales ante el cambio ambiental y pueden funcionar como un barómetro para la viabilidad poblacional. Sin embargo, la mayoría de los estudios sobre la conversión del hábitat se enfocan en cambios en la presencia o abundancia de las especies. Analizamos más de 14,000 observaciones conductuales en las comunidades de 55 especies de aves del noroeste de Costa Rica para determinar cómo el uso de suelo afectó el comportamiento reproductivo, de forrajeo y otras formas pasivas no asociadas con las dos anteriores. En específico, cuantificamos las diferencias en el comportamiento entre granjas, bosques de propiedad privada y áreas protegidas e implementamos un marco novedoso de modelado para justificar la variación en la detección entre los comportamientos. Este marco implicó estimar la abundancia de aves que realizaban diferentes comportamientos mientras permitía que variaran las probabilidades de detección de individuos según el comportamiento. Fue 1.2 veces más probable que las aves exhibieran comportamiento reproductivo en el bosque que en las zonas agrícolas y 1.5 veces más probable que exhibieran estos comportamientos en las áreas protegidas que en los bosques privados. Las especies no siempre fueron las más abundantes en los hábitats en donde era más probable que exhibieran comportamientos reproductivos o de forrajeo. Por último, las especies de mayor preocupación para la conservación fueron menos abundantes en las zonas agrícolas que en los bosques. En conjunto, nuestros resultados resaltan la importancia del análisis conductual para ilustrar el valor de conservación de los diferentes usos de suelo.

3.
J Therm Biol ; 119: 103762, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38071898

RESUMEN

Predicting ecological responses to rapid environmental change has become one of the greatest challenges of modern biology. One of the major hurdles in forecasting these responses is accurately quantifying the thermal environments that organisms experience. The distribution of temperatures available within an organism's habitat is typically measured using data loggers called operative temperature models (OTMs) that are designed to mimic certain properties of heat exchange in the focal organism. The gold standard for OTM construction in studies of terrestrial ectotherms has been the use of copper electroforming which creates anatomically accurate models that equilibrate quickly to ambient thermal conditions. However, electroformed models require the use of caustic chemicals, are often brittle, and their production is expensive and time intensive. This has resulted in many researchers resorting to the use of simplified OTMs that can yield substantial measurement errors. 3D printing offers the prospect of robust, easily replicated, morphologically accurate, and cost-effective OTMs that capture the benefits but alleviate the problems associated with electroforming. Here, we validate the use of OTMs that were 3D printed using several materials across eight lizard species of different body sizes and living in habitats ranging from deserts to tropical forests. We show that 3D printed OTMs have low thermal inertia and predict the live animal's equilibration temperature with high accuracy across a wide range of body sizes and microhabitats. Finally, we developed a free online repository and database of 3D scans (https://www.3dotm.org/) to increase the accessibility of this tool to researchers around the world and facilitate ease of production of 3D printed models. 3D printing of OTMs is generalizable to taxa beyond lizards. If widely adopted, this approach promises greater accuracy and reproducibility in studies of terrestrial thermal ecology and should lead to improved forecasts of the biological impacts of climate change.


Asunto(s)
Regulación de la Temperatura Corporal , Lagartos , Animales , Análisis Costo-Beneficio , Reproducibilidad de los Resultados , Temperatura Corporal , Temperatura , Ecosistema , Lagartos/fisiología , Impresión Tridimensional
4.
Ecology ; 104(12): e4181, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37784251

RESUMEN

Many animal-environment interactions are mediated by the physical forms of the environment, especially in tropical forests, where habitats are structurally complex and highly diverse. Higher structural complexity, measured as habitat surface area, may provide increased resource availability for animals, leading to higher animal diversity. Greater habitat surface area supports increased animal diversity in other systems, such as coral reefs and forest canopies, but it is uncertain how this relationship translates to communities of highly mobile, terrestrial mammal species inhabiting forest floors. We tested the relative importance of forest floor habitat structure, encompassing vegetation and topographic structure, in determining species occupancy and functional diversity of medium to large mammals using data from a tropical forest in the Udzungwa Mountains of Tanzania. We related species occupancies and diversity obtained from a multispecies occupancy model with ground-level habitat structure measurements obtained from a novel head-mounted active remote sensing device, the Microsoft HoloLens. We found that habitat surface area was a significant predictor of mean species occupancy and had a significant positive relationship with functional dispersion. The positive relationships indicate that surface area of tropical forest floors may play an important role in promoting mammal occupancy and functional diversity at the microhabitat scale. In particular, habitat surface area had higher mean effects on occupancy for carnivorous and social species. These results support a habitat surface area-diversity relationship on tropical forest floors for mammals.


Asunto(s)
Biodiversidad , Carnívoros , Animales , Bosques , Ecosistema , Mamíferos , Arrecifes de Coral
5.
Proc Natl Acad Sci U S A ; 120(37): e2303937120, 2023 09 12.
Artículo en Inglés | MEDLINE | ID: mdl-37669369

RESUMEN

While some agricultural landscapes can support wildlife in the short term, it is uncertain how well they can truly sustain wildlife populations. To compare population trends in different production systems, we sampled birds along 48 transects in mature forests, diversified farms, and intensive farms across Costa Rica from 2000 to 2017. To assess how land use influenced population trends in the 349 resident and 80 migratory species with sufficient data, we developed population models. We found, first, that 23% of species were stable in all three land use types, with the rest almost evenly split between increasing and decreasing populations. Second, in forest habitats, a slightly higher fraction was declining: 62% of the 164 species undergoing long-term population changes; nearly half of these declines occurred in forest-affiliated invertivores. Third, in diversified farms, 49% of the 230 species with population changes were declining, with 60% of these declines occurring in agriculture-affiliated species. In contrast, 51% of the species with population changes on diversified farms showed increases, primarily in forest-affiliated invertivores and frugivores. In intensive farms, 153 species showed population changes, also with similar proportions of species increasing (50%) and decreasing (50%). Declines were concentrated in agriculture-affiliated invertivores and forest-affiliated frugivores; increases occurred in many large, omnivorous species. Our findings paint a complex picture but clearly indicate that diversified farming helps sustain populations of diverse, forest-affiliated species. Despite not fully offsetting losses in forest habitats, diversified farming practices help sustain wildlife in a critical time, before possible transformation to nature-positive policies and practices.


Asunto(s)
Agricultura , Bosques , Animales , Granjas , Animales Salvajes , Aves
6.
Nature ; 622(7981): 101-106, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37758956

RESUMEN

Protected areas (PAs) are the primary strategy for slowing terrestrial biodiversity loss. Although expansion of PA coverage is prioritized under the Convention on Biological Diversity, it remains unknown whether PAs mitigate declines across the tetrapod tree of life and to what extent land cover and climate change modify PA effectiveness1,2. Here we analysed rates of change in abundance of 2,239 terrestrial vertebrate populations across the globe. On average, vertebrate populations declined five times more slowly within PAs (-0.4% per year) than at similar sites lacking protection (-1.8% per year). The mitigating effects of PAs varied both within and across vertebrate classes, with amphibians and birds experiencing the greatest benefits. The benefits of PAs were lower for amphibians in areas with converted land cover and lower for reptiles in areas with rapid climate warming. By contrast, the mitigating impacts of PAs were consistently augmented by effective national governance. This study provides evidence for the effectiveness of PAs as a strategy for slowing tetrapod declines. However, optimizing the growing PA network requires targeted protection of sensitive clades and mitigation of threats beyond PA boundaries. Provided the conditions of targeted protection, adequate governance and well-managed landscapes are met, PAs can serve a critical role in safeguarding tetrapod biodiversity.


Asunto(s)
Biodiversidad , Conservación de los Recursos Naturales , Especies en Peligro de Extinción , Filogenia , Vertebrados , Animales , Aves/clasificación , Conservación de los Recursos Naturales/métodos , Conservación de los Recursos Naturales/estadística & datos numéricos , Vertebrados/clasificación , Especies en Peligro de Extinción/estadística & datos numéricos , Especies en Peligro de Extinción/tendencias , Anfibios/clasificación , Reptiles/clasificación , Calentamiento Global/estadística & datos numéricos
7.
Ecol Lett ; 25(11): 2384-2396, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36192673

RESUMEN

Ecological community structure ultimately depends on the production of community members by speciation. To understand how macroevolution shapes communities, we surveyed Anolis lizard assemblages across elevations on Jamaica and Hispaniola, neighbouring Caribbean islands similar in environment, but contrasting in the richness of their endemic evolutionary radiations. The impact of diversification on local communities depends on available spatial opportunities for speciation within or between ecologically distinct sub-regions. In the spatially expansive lowlands of both islands, communities converge in species richness and average morphology. But communities diverge in the highlands. On Jamaica, where limited highland area restricted diversification, communities remain depauperate and consist largely of elevational generalists. In contrast, a unique fauna of high-elevation specialists evolved in the vast Hispaniolan highlands, augmenting highland richness and driving islandwide turnover in community composition. Accounting for disparate evolutionary opportunities may illuminate when regional diversity will enhance local diversity and help predict when communities should converge in structure.


Asunto(s)
Lagartos , Animales , Lagartos/genética , Evolución Biológica , Biota , Indias Occidentales , Filogenia
8.
Proc Natl Acad Sci U S A ; 119(41): e2214266119, 2022 10 11.
Artículo en Inglés | MEDLINE | ID: mdl-36179042
9.
Ecol Appl ; 32(6): e2632, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35403280

RESUMEN

Understanding how and why animals use the environments where they occur is both foundational to behavioral ecology and essential to identify critical habitats for species conservation. However, some behaviors are more difficult to observe than others, which can bias analyses of raw observational data. To our knowledge, no method currently exists to model how animals use different environments while accounting for imperfect behavior-specific detection probability. We developed an extension of a binomial N-mixture model (hereafter the behavior N-mixture model) to estimate the probability of a given behavior occurring in a particular environment while accounting for imperfect detection. We then conducted a simulation to validate the model's ability to estimate the effects of environmental covariates on the probabilities of individuals performing different behaviors. We compared our model to a naïve model that does not account for imperfect detection, as well as a traditional N-mixture model. Finally, we applied the model to a bird observation data set in northwest Costa Rica to quantify how three species behave in forests and farms. Simulations and sensitivity analyses demonstrated that the behavior N-mixture model produced unbiased estimates of behaviors and their relationships with predictor variables (e.g., forest cover, habitat type). Importantly, the behavior N-mixture model accurately characterized uncertainty, unlike the naïve model, which often suggested erroneous effects of covariates on behaviors. When applied to field data, the behavior N-mixture model suggested that Hoffmann's woodpecker (Melanerpes hoffmanii) and Inca dove (Columbina inca) behaved differently in forested versus agricultural habitats, while turquoise-browed motmot (Eumomota superciliosa) did not. Thus, the behavior N-mixture model can help identify habitats that are essential to a species' life cycle (e.g., where individuals nest, forage) that nonbehavioral models would miss. Our model can greatly improve the appropriate use of behavioral survey data and conclusions drawn from them. In doing so, it provides a valuable path forward for assessing the conservation value of alternative habitat types.


Asunto(s)
Aves , Ecosistema , Agricultura , Animales , Ecología , Bosques
10.
Ecol Appl ; 32(2): e2523, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34921463

RESUMEN

Recent foodborne illness outbreaks have heightened pressures on growers to deter wildlife from farms, jeopardizing conservation efforts. However, it remains unclear which species, particularly birds, pose the greatest risk to food safety. Using >11,000 pathogen tests and 1565 bird surveys covering 139 bird species from across the western United States, we examined the importance of 11 traits in mediating wild bird risk to food safety. We tested whether traits associated with pathogen exposure (e.g., habitat associations, movement, and foraging strategy) and pace-of-life (clutch size and generation length) mediated foodborne pathogen prevalence and proclivities to enter farm fields and defecate on crops. Campylobacter spp. were the most prevalent enteric pathogen (8.0%), while Salmonella and Shiga-toxin producing Escherichia coli (STEC) were rare (0.46% and 0.22% prevalence, respectively). We found that several traits related to pathogen exposure predicted pathogen prevalence. Specifically, Campylobacter and STEC-associated virulence genes were more often detected in species associated with cattle feedlots and bird feeders, respectively. Campylobacter was also more prevalent in species that consumed plants and had longer generation lengths. We found that species associated with feedlots were more likely to enter fields and defecate on crops. Our results indicated that canopy-foraging insectivores were less likely to deposit foodborne pathogens on crops, suggesting growers may be able to promote pest-eating birds and birds of conservation concern (e.g., via nest boxes) without necessarily compromising food safety. As such, promoting insectivorous birds may represent a win-win-win for bird conservation, crop production, and food safety. Collectively, our results suggest that separating crop production from livestock farming may be the best way to lower food safety risks from birds. More broadly, our trait-based framework suggests a path forward for co-managing wildlife conservation and food safety risks in farmlands by providing a strategy for holistically evaluating the food safety risks of wild animals, including under-studied species.


Asunto(s)
Animales Salvajes , Escherichia coli Shiga-Toxigénica , Animales , Aves , Bovinos , Granjas , Salmonella , Estados Unidos
11.
Ecol Lett ; 24(4): 819-828, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33594778

RESUMEN

For migratory species, seasonal movements complicate local climate adaptation, as it is unclear whether individuals track climate niches across the annual cycle. In the migratory songbird yellow warbler (Setophaga petechia), we find a correlation between individual-level wintering and breeding precipitation, but not temperature. Birds wintering in the driest regions of the Neotropics breed in the driest regions of North America. Individuals from drier regions also possess distinct morphologies and population responses to varying rainfall. We find a positive association between bill size and breeding season precipitation which, given documented climate-associated genomic variation, might reflect adaptation to local precipitation regimes. Relative abundance in the breeding range is linked to interannual fluctuations in precipitation, but the directionality of this response varies across geography. Together, our results suggest that variation in climate optima may exist across the breeding range of yellow warblers and provide a mechanism for selection across the annual cycle.


Asunto(s)
Migración Animal , Cambio Climático , Animales , Clima , Variación Genética , Humanos , América del Norte , Estaciones del Año
12.
Nature ; 581(7808): E6, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-32433608

RESUMEN

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

13.
Nature ; 579(7799): 393-396, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-32188954

RESUMEN

Agricultural practices constitute both the greatest cause of biodiversity loss and the greatest opportunity for conservation1,2, given the shrinking scope of protected areas in many regions. Recent studies have documented the high levels of biodiversity-across many taxa and biomes-that agricultural landscapes can support over the short term1,3,4. However, little is known about the long-term effects of alternative agricultural practices on ecological communities4,5 Here we document changes in bird communities in intensive-agriculture, diversified-agriculture and natural-forest habitats in 4 regions of Costa Rica over a period of 18 years. Long-term directional shifts in bird communities were evident in intensive- and diversified-agricultural habitats, but were strongest in intensive-agricultural habitats, where the number of endemic and International Union for Conservation of Nature (IUCN) Red List species fell over time. All major guilds, including those involved in pest control, pollination and seed dispersal, were affected. Bird communities in intensive-agricultural habitats proved more susceptible to changes in climate, with hotter and drier periods associated with greater changes in community composition in these settings. These findings demonstrate that diversified agriculture can help to alleviate the long-term loss of biodiversity outside natural protected areas1.


Asunto(s)
Agricultura/métodos , Agricultura/estadística & datos numéricos , Biodiversidad , Aves/clasificación , Bosques , Animales , Bovinos , Costa Rica , Productos Agrícolas/provisión & distribución , Extinción Biológica , Agricultura Forestal/estadística & datos numéricos , Calentamiento Global/estadística & datos numéricos , Control Biológico de Vectores , Polinización , Dispersión de Semillas , Factores de Tiempo
14.
Science ; 367(6481): 1035-1038, 2020 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-32108111

RESUMEN

Ecological differentiation is correlated with taxonomic diversity in many clades, and ecological divergence is often assumed to be a cause and/or consequence of high speciation rate. However, an analysis of 30,074 genera of living marine animals and 19,992 genera of fossil marine animals indicates that greater ecological differentiation in the modern oceans is actually associated with lower rates of origination over evolutionary time. Ecologically differentiated clades became taxonomically diverse over time because they were better buffered against extinction, particularly during mass extinctions, which primarily affected genus-rich, ecologically homogeneous clades. The relationship between ecological differentiation and taxonomic richness was weak early in the evolution of animals but has strengthened over geological time as successive extinction events reshaped the marine fauna.


Asunto(s)
Organismos Acuáticos/clasificación , Biodiversidad , Extinción Biológica , Especiación Genética , Organismos Acuáticos/genética , Fósiles , Océanos y Mares
15.
Proc Biol Sci ; 286(1916): 20192290, 2019 12 04.
Artículo en Inglés | MEDLINE | ID: mdl-31795872

RESUMEN

Disruptive natural selection within populations exploiting different resources is considered to be a major driver of adaptive radiation and the production of biodiversity. Fitness functions, which describe the relationships between trait variation and fitness, can help to illuminate how this disruptive selection leads to population differentiation. However, a single fitness function represents only a particular selection regime over a single specified time period (often a single season or a year), and therefore might not capture longer-term dynamics. Here, we build a series of annual fitness functions that quantify the relationships between phenotype and apparent survival. These functions are based on a 9-year mark-recapture dataset of over 600 medium ground finches (Geospiza fortis) within a population bimodal for beak size. We then relate changes in the shape of these functions to climate variables. We find that disruptive selection between small and large beak morphotypes, as reported previously for 2 years, is present throughout the study period, but that the intensity of this selection varies in association with the harshness of environment. In particular, we find that disruptive selection was strongest when precipitation was high during the dry season of the previous year. Our results shed light on climatic factors associated with disruptive selection in Darwin's finches, and highlight the role of temporally varying fitness functions in modulating the extent of population differentiation.


Asunto(s)
Pinzones/fisiología , Selección Genética , Animales , Pico , Ecuador , Pinzones/genética , Fenotipo
16.
Ecol Appl ; 29(5): e01910, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-31107576

RESUMEN

Ecologists are increasingly exploring methods for preserving biodiversity in agricultural landscapes. Yet because species vary in how they respond to habitat conversion, ecological communities in agriculture and more natural habitats are often distinct. Unpacking the heterogeneity in species responses to habitat conversion will be essential for predicting and mitigating community shifts. Here, we analyze two years of bird censuses at 150 sites across gradients of local land cover, landscape forest amount and configuration, and regional precipitation in Costa Rica to holistically characterize species responses to habitat conversion. Specifically, we used Poisson-binomial mixture models to (1) delineate groups of species that respond similarly to environmental gradients, (2) explore the relative importance of local vs. landscape-level habitat conversion, and (3) determine how landscape context influences species' local habitat preferences. We found that species fell into six groups: habitat generalists, abundant and rare forest specialists, and three groups of agricultural specialists that differed in their responses to landscape forest cover, fragmentation, and regional precipitation. Birds were most sensitive to local forest cover, but responses were contingent on landscape context. Specifically, forest specialists benefitted most when local forest cover increased in forested landscapes, while habitat generalists exhibited compensatory dynamics, peaking at sites with either local or landscape-level forest, but not both. Our study demonstrates that species responses to habitat conversion are complex but predictable. Characterizing species-level responses to environmental gradients represents a viable approach for forecasting the winners and losers of global change and designing interventions to minimize the ongoing restructuring of Earth's biota.


Asunto(s)
Aves , Ecosistema , Animales , Biodiversidad , Costa Rica , Bosques
17.
Nat Ecol Evol ; 3(4): 638-646, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30804497

RESUMEN

Human impacts, especially land-use change, are precipitating biodiversity loss. Yet anthropogenic drivers are layered atop natural biogeographic gradients. We ask whether the effects of anthropogenic habitat conversion depend on climatic context. We studied the structure of Anolis lizard communities in intact and human-modified habitats across natural climate gradients in the northern Dominican Republic. Using community-wide mark-resight methods to control for detection bias, we show that the effects of habitat conversion reverse with elevation (and thus macroclimate temperature). Deforestation reduces abundance and biomass in lowland communities but has no such effect at high elevations. In contrast, forest loss results in no compositional change in the lowlands, but complete community turnover between habitats in the highlands. These contrasting community-level patterns emerge from consistent responses of individual species based on their thermal niches. Community reorganization in the highlands stems from thermal niche tracking and habitat switching by abundant lowland species. We find no support for the hypothesis that climate generalists outperform specialists to succeed in anthropogenic habitats. Instead, warm-climate specialists dominate anthropogenic habitats, even in cool macroclimates. Human impacts interact with pre-existing environmental gradients to reorganize biodiversity. Leveraging a biogeographic perspective will provide insight into the future communities of life on Earth.


Asunto(s)
Ecosistema , Lagartos , Altitud , Animales , Clima , Actividades Humanas
18.
Proc Natl Acad Sci U S A ; 115(15): E3454-E3462, 2018 04 10.
Artículo en Inglés | MEDLINE | ID: mdl-29555733

RESUMEN

Habitat conversion is driving biodiversity loss and restructuring species assemblages across the globe. Responses to habitat conversion vary widely, however, and little is known about the degree to which shared evolutionary history underlies changes in species richness and composition. We analyzed data from 48 studies, comprising 438 species on five continents, to understand how taxonomic and phylogenetic diversity of amphibian assemblages shifts in response to habitat conversion. We found that evolutionary history explains the majority of variation in species' responses to habitat conversion, with specific clades scattered across the amphibian tree of life being favored by human land uses. Habitat conversion led to an average loss of 139 million years of amphibian evolutionary history within assemblages, high species and lineage turnover at landscape scales, and phylogenetic homogenization at the global scale (despite minimal taxonomic homogenization). Lineage turnover across habitats was greatest in lowland tropical regions where large species pools and stable climates have perhaps given rise to many microclimatically specialized species. Together, our results indicate that strong phylogenetic clustering of species' responses to habitat conversion mediates nonrandom structuring of local assemblages and loss of global phylogenetic diversity. In an age of rapid global change, identifying clades that are most sensitive to habitat conversion will help prioritize use of limited conservation resources.


Asunto(s)
Anfibios/clasificación , Ecosistema , Filogenia , Anfibios/genética , Animales , Biodiversidad , Evolución Biológica , Humanos
19.
Glob Chang Biol ; 24(1): 338-349, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-28833924

RESUMEN

Earth is experiencing multiple global changes that will, together, determine the fate of many species. Yet, how biological communities respond to concurrent stressors at local-to-regional scales remains largely unknown. In particular, understanding how local habitat conversion interacts with regional climate change to shape patterns in ß-diversity-differences among sites in their species compositions-is critical to forecast communities in the Anthropocene. Here, we study patterns in bird ß-diversity across land-use and precipitation gradients in Costa Rica. We mapped forest cover, modeled regional precipitation, and collected data on bird community composition, vegetation structure, and tree diversity across 120 sites on 20 farms to answer three questions. First, do bird communities respond more strongly to changes in land use or climate in northwest Costa Rica? Second, does habitat conversion eliminate ß-diversity across climate gradients? Third, does regional climate control how communities respond to habitat conversion and, if so, how? After correcting for imperfect detection, we found that local land-use determined community shifts along the climate gradient. In forests, bird communities were distinct between sites that differed in vegetation structure or precipitation. In agriculture, however, vegetation structure was more uniform, contributing to 7%-11% less bird turnover than in forests. In addition, bird responses to agriculture and climate were linked: agricultural communities across the precipitation gradient shared more species with dry than wet forest communities. These findings suggest that habitat conversion and anticipated climate drying will act together to exacerbate biotic homogenization.


Asunto(s)
Agricultura , Biodiversidad , Aves/clasificación , Conservación de los Recursos Naturales , Monitoreo del Ambiente , Bosques , Animales , Aves/fisiología , Costa Rica , Árboles
20.
Am Nat ; 190(2): 200-212, 2017 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-28731793

RESUMEN

If species' evolutionary pasts predetermine their responses to evolutionarily novel stressors, then phylogeny could predict species survival in an increasingly human-dominated world. To understand the role of phylogenetic relatedness in structuring responses to rapid environmental change, we focused on assemblages of Neotropical bats, an ecologically diverse and functionally important group. We examined how taxonomic and phylogenetic diversity shift between tropical forest and farmland. We then explored the importance of evolutionary history by ascertaining whether close relatives share similar responses to environmental change and which species traits might mediate these trends. We analyzed a 5-year data set (5,011 captures) from 18 sites in a countryside landscape in southern Costa Rica using statistical models that account and correct for imperfect detection of species across sites, spatial autocorrelation, and consideration of spatial scale. Taxonomic and phylogenetic diversity decreased with deforestation, and assemblages became more phylogenetically clustered. Species' responses to deforestation were strongly phylogenetically correlated. Body mass and absolute wing loading explained a substantial portion of species variation in species' habitat preferences, likely related to these traits' influence on maneuverability in cluttered forest environments. Our findings highlight the role that evolutionary history plays in determining which species will survive human impacts and the need to consider diversity metrics, evolutionary history, and traits together when making predictions about species persistence for conservation or ecosystem functioning.


Asunto(s)
Biodiversidad , Quirópteros , Filogenia , Animales , Conservación de los Recursos Naturales , Costa Rica , Ecosistema , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...